The Carney Landis Experiment

Suppose you’re making your way through a jungle, and in pulling aside a bush you find yourself before a huge snake, ready to attack you. All of a sudden adrenaline rushes through your body, your eyes open wide, and you instantly begin to sweat as your heartbeat skyrockets: in a word, you feel afraid.
But is your fear triggering all these physical reactions, or is it the other way around?
To make a less disquieting example, let’s say you fall in love at first sight with someone. Are the endorphines to be accounted for your excitation, or is your excitation causing their discharge through your body?
What comes first, physiological change or emotion? Which is the cause and which is the effect?

This dilemma was a main concern in the first studies on emotion (and it still is, in the field of affective neurosciences). Among the first and most influential hypothesis was the James-Lange theory, which maintained the primacy of physiological changes over feelings: the brain detects a modification in the stimuli coming from the nervous system, and it “interprets” them by giving birth to an emotion.

One of the problems with this theory was the impossibility of obtaining clear evidence. The skeptics argued that if every emotion arises mechanically within the body, then there should be a gland or an organ which, when conveniently stimulated, will invariably trigger the same emotion in every person. Today we know a little bit more of how emotions work, in regard to the amygdala and the different areas of cerebral cortex, but at the beginning of the Twentieth Century the objection against the James-Lange theory was basically this — “come on, find me the muscle of sadness!

In 1924, Carney Landis, a Minnesota University graduate student, set out to understand experimentally whether these physiological changes are the same for everybody. He focused on those modifications that are the most evident and easy to study: the movement of facial muscles when emotion arises. His study was meant to find repetitive patterns in facial expressions.

To understand if all subjects reacted in the same way to emotions, Landis recruited a good number of his fellow graduate students, and began by painting their faces with standard marks, in order to highlight their grimaces and the related movement of facial muscles.
The experiment consisted in subjecting them to different stimuli, while taking pictures of their faces.

At first volunteers were asked to complete some rather harmless tasks: they had to listen to jazz music, smell ammonia, read a passage from the Bible, tell a lie. But the results were quite discouraging, so Landis decided it was time to raise the stakes.

He began to show his subjects pornographic images. Then some medical photos of people with horrendous skin conditions. Then he tried firing a gunshot to capture on film the exact moment of their fright. Still, Landis was having a hard time getting the expressions he wanted, and in all probability he began to feel frustrated. And here his experiment took a dark turn.

He invited his subjects to stick their hand in a bucket, without looking. The bucket was full of live frogs. Click, went his camera.
Landis encouraged them to search around the bottom of the mysterious bucket. Overcoming their revulsion, the unfortunate volunteers had to rummage through the slimy frogs until they found the real surprise: electrical wires, ready to deliver a good shock. Click. Click.
But the worst was yet to come.

The experiment reached its climax when Landis put a live mouse in the subject’s left hand, and a knife in the other. He flatly ordered to decapitate the mouse.
Most of his incredulous and stunned subjects asked Landis if he was joking. He wasn’t, they actually had to cut off the little animal’s head, or he himself would do it in front of their eyes.
At this point, as Landis had hoped, the reactions really became obvious — but unfortunately they also turned out to be more complex than he expected. Confronted with this high-stress situation, some persons started crying, others hysterically laughed; some completely froze, others burst out into swearing.

Two thirds of the paricipants ended up complying with the researcher’s order, and carried out the macabre execution. In any case, the remaining third had to witness the beheading, performed by Landis himself.
As we said, the subjects were mainly other students, but one notable exception was a 13 years-old boy who happened to be at the department as a patient, on the account of psychological issues and high blood pressure. His reaction was documented by Landis’ ruthless snapshots.

Perhaps the most embarassing aspect of the whole story was that the final results for this cruel test — which no ethical board would today authorize — were not even particularly noteworthy.
Landis, in his Studies of Emotional Reactions, II., General Behavior and Facial Expression (published on the Journal of Comparative Psychology, 4 [5], 447-509) came to these conclusions:

1) there is no typical facial expression accompanying any emotion aroused in the experiment;
2) emotions are not characterized by a typical expression or recurring pattern of muscular behavior;
3) smiling was the most common reaction, even during unpleasant experiences;
4) asymmetrical bodily reactions almost never occurred;
5) men were more expressive than women.

Hardly anything that could justify a mouse massacre, and the trauma inflicted upon the paritcipants.

After obtaining his degree, Carney Landis devoted himself to sexual psychopatology. He went on to have a brillant carreer at the New York State Psychiatric Institute. And he never harmed a rodent again, despite the fact that he is now mostly remembered for this ill-considered juvenile experiment rather than for his subsequent fourty years of honorable research.

There is, however, one last detail worth mentioning.
Alex Boese in his Elephants On Acid, underlines how the most interesting figure of all this bizarre experiment went unnoticed: the fact that two thirds of the subjects, although protesting and suffering, obeyed the terrible order.
And this percentage is in fact similar to the one recorded during the infamous Milgram experiment, in which a scientist commanded the subjects to inflict an electric shock to a third individual (in reality, an actor who pretended to receive the painful discharge). In that case as well, despite the ethical conflict, the simple fact that the order came from an authority figure was enough to push the subjects into carrying out an action they perceived as aberrant.

The Milgram experiment took place in 1961, almost forty years after the Landis experiment. “It is often this way with experiments — says Boese — A scientis sets out to prove one thing, but stumbles upon something completely different, something far more intriguing. For this reason, good researchers know they should always pay close attention to strange events that occur during their experiments. A great discovery might be lurking right beneath their eyes – or beneath te blade of their knife.

On facial expressions related to emotions, see also my former post on Guillaume Duchenne (sorry, Italian language only).

Vermi cannibali e molecole di memoria

A volte, in questo mondo, la meraviglia può nascondersi nei luoghi e negli esseri più umili e, all’apparenza, insignificanti.
Le planarie sono dei minuscoli e piatti vermiciattoli, lunghi appena qualche centimetro, del colore del fango e che nel fango trascorrono la loro esistenza, nell’alveo di stagni e acquitrini.

Smed

Eppure questi platelminti hanno una capacità che ha del miracoloso: se li tagliate in due, la testa è capace di rigenerare l’intero corpo. E fin qui non ci sarebbe nulla di così straordinario – molti animali sono in grado di far “ricrescere” le parti del proprio corpo che vengono a mancare e alcuni (come il granchio, la salamandra, la stella marina o la lucertola) arrivano addirittura all’autotomia, vale a dire ad amputarsi volontariamente un’appendice per sfuggire a un predatore. Quello che rende le planarie davvero straordinarie è che non soltanto la testa può rigenerare l’intero corpo, ma anche la coda riesce a farsi spuntare una nuova testa.
In effetti, esistono planarie sessuate e planarie asessuate; se quelle sessuate copulano e producono uova, le loro compagne asessuate si riproducono perdendo la coda, che diviene un secondo individuo con lo stesso patrimonio genetico del “genitore”.
E questo è solo l’inizio.

planaria-regenerating-brain-640x353

Se sezionate una planaria longitudinalmente passando il vostro bisturi fra i due occhi, dove dovrebbe stare il cervello, fino alla fine della coda, le due metà si rigenereranno comunque: la parte sinistra farà ricrescere la parte destra mancante, e viceversa.
Poniamo che siate davvero accecati dall’odio per questo animaletto, e che decidiate di tagliarlo in 100 pezzi, certi finalmente di averlo fatto fuori; nel giro di qualche settimana le “fettine” avranno dato vita a 100 vermi perfettamente formati. Questo è stato verificato perfino tagliando una planaria in 279 pezzi.
E per finire, se dividete a metà la testa di una planaria, lasciandole però intatto il corpo, le due parti attiveranno comunque il processo di ricrescita della metà “mancante”, e in poco tempo vi ritroverete con una planaria a due teste.

Image1

00494937c40

Autotom6

Ovviamente il segreto sta nella semplicità della struttura fisica di questi animali: l’apparato digerente è rudimentale, lo scambio fra ossigeno e anidride carbonica avviene per diffusione, senza bisogno di organi particolari e, più che di un vero e proprio cervello, essi sono dotati di un piccolo ganglio, due lobi di tessuto nervoso che formano una massa in cui è stata riscontrata attività elettrica simile a quella di altri animali. Due nervi principali corrono giù su entrambi i fianchi della planaria fino alla coda, e altri più piccoli li uniscono trasversalmente, come pioli di una scala.

315801-Platyhelminthes_Planaria_2

Planaria_nervous
L’attività rigenerativa avviene per epimorfosi: questo significa che sulla ferita cominciano a proliferare delle cellule indifferenziate che, una volta raggiunto un numero adeguato, si differenziano e cominciano a creare i tessuti mancanti.

McConnell, James V

Se tutte queste stranezze non fossero già abbastanza, ecco entrare in scena il professor James V. McConnell, biologo ed etologo, personalità eccentrica con uno spiccato gusto per la provocazione. Lo studioso nel 1955 cominciò i suoi esperimenti con le planarie, e scoprì di poter condizionare il loro comportamento proprio come Pavlov con il suo famoso cane. Sottopose i vermi a questo trattamento: prima accendeva sul loro acquario una forte luce, e poi dava loro una scossa elettrica. Le planarie, come è comprensibile, facevano l’unica cosa che potevano per proteggersi o per resistere al dolore: si accartocciavano. Luce forte, scossa, luce forte, scossa. Dopo un certo periodo McConnell provò ad accendere soltanto la luce; gli animali si accartocciarono, in attesa di una scossa che non sarebbe arrivata.
McConnell dimostrò quindi che le planarie avevano una memoria: quelle già condizionate in precedenza avevano bisogno di meno tempo, e meno scosse, per ricordarsi il significato della luce, rispetto alle loro ignare colleghe appena entrate nell’acquario.
A partire da questa constatazione, McConnell cominciò i bizzarri esperimenti per cui ancora oggi – nonostante successive, più prestigiose ricerche – viene ricordato.

Assieme al suo team di worm runners (così aveva battezzato i suoi collaboratori) condizionò delle planarie, poi le divise a metà. Voleva accertarsi se, una volta rigenerate in due individui separati, si ricordassero ancora il loro condizionamento, e le sottopose quindi al suo test luce/scossa. La planaria formatasi a partire dalla testa, che quindi aveva mantenuto il suo cervello, si ricordava ancora perfettamente il pericolo associato alla luce, e si accartocciava appena questa veniva accesa. Ma la cosa davvero incredibile era che anche la planaria “nata” dalla coda tagliata sembrava non aver minimamente perso la memoria del condizionamento.
Cosa voleva dire? Per McConnell la spiegazione era evidente: quella era la prova che la memoria dell’animale non albergava esclusivamente nel cervello, o nel sistema nervoso centrale. Ma dove, allora?

McConnell aveva una sua teoria, ma per confermarla doveva fare un passo ulteriore.
Tagliò uno dei vermi già condizionati in pezzetti piccolissimi – praticamente lo macinò – e lo diede in pasto ad altre planarie che non sapevano nulla di luci o di scosse. (Ebbene sì, questi animaletti non disdegnano affatto il cannibalismo).
Ed ecco, prodigio!, le planarie ignoranti di colpo non lo erano più. Avevano digerito e incorporato la memoria del loro sfortunato compagno.

Planariafull

Secondo i test successivi, infatti, i vermi cannibali che si erano cibati della planaria “addestrata” apprendevano molto più in fretta a reagire al riflesso condizionato. La memoria, concluse McConnell, era dunque un fenomeno chimico: dato che l’RNA codifica informazioni, e dato che le cellule viventi producono e modificano l’RNA in reazione ad eventi esterni, era forse così che all’interno dei neuroni venivano registrati e conservati i ricordi: Memory RNA, battezzò McConnell la molecola che ipoteticamente potrebbe essere responsabile di tutte le nostre memorie.

Le scoperte di McConnell causarono, comprensibilmente, un piccolo vespaio. Dal 1962 fino al 1969 circa, scettici e possibilisti si accapigliarono: potevano questi risultati avere qualcosa a che vedere con il modo in cui l’apprendimento avviene nel cervello umano? I vermi avevano davvero imparato semplicemente mangiando le memorie altrui, o l’esperimento era falsato? Era possibile immaginare un futuro in cui, invece di studiare, sarebbe bastata una pillola per diventare edotti in qualsiasi materia?

Di colpo, tutti si misero a tagliare vermi in laboratorio. Nonostante la buona volontà, però, questi eclatanti risultati non vennero mai replicati con precisione. Già difficile da digerire in partenza, la teoria di McConnell a poco a poco perse di risonanza, fino a diventare poco più di una barzelletta.

worm_runners_digest_title_page

A dire la verità, l’atteggiamento poco ortodosso e irriverente di McConnell non aiutò. Secondo lui, per essere scienziati seri non serviva assolutamente essere anche solenni e pomposi.
Nel suo Journal of Biological Psychology, il professore spesso amava mischiare le carte, e pubblicava le sue scoperte “serie” insieme ad articoli satirici. I lettori finirono per essere troppo confusi, quindi McConnell decise di stampare i testi scientifici su un lato della rivista, e quelli comici sul retro, sottosopra: da una parte si leggeva il Journal of Biological Psychology, e girando i fogli ci si poteva intrattenere con il più faceto Worm Runner’s Digest. McConnell si divertiva come un matto quando qualche libreria rispediva indietro le copie della strana rivista, segnalando un errore nella rilegatura.
Alla fine i contributi satirici del Worm Runner’s Digest risultarono così numerosi che McConnell riuscì a raccoglierli in ben due libri: The Worm Re-Turns (1965) e Science, Sex and Sacred Cows (1971).

41nltSI6ymL._SL500_SY344_BO1,204,203,200_

51I7dFEnakL._SL500_

La sede della memoria, oggi lo sappiamo con relativa certezza, è la corteccia cerebrale, anche se ippocampo e amigdala giocano sicuramente ruoli importanti nella “registrazione” del ricordo. Eppure i meccanismi molecolari che regolano la formazione e il mantenimento della memoria, così come la sua “morte” nel momento in cui dimentichiamo qualcosa, sono ancora nebulosi.

Nel 2001 alcuni ricercatori intenti a studiare l’interferenza dell’RNA (uno degli argomenti più “caldi” nella biologia molecolare odierna) hanno sollevato il dubbio che McConnell, almeno in parte, fosse sulla strada giusta nell’insistere affinché venissero studiate le basi chimiche della memoria. Peccato che il diretto interessato non possa assistere a questo ritorno di fiamma delle sue teorie.
Nella seconda parte della sua carriera accademica di professore emerito, James McConnell si dedicò alla redazione di un fondamentale libro di testo di psicologia generale (Understandig Human Behavior), si occupò di psicologia sociale e di sensorialità nei soggetti autistici, e svolse ricerche sulla percezione subliminale. Nel 1985 fu vittima di Unabomber, e perse temporaneamente l’udito quando il suo assistente aprì un manoscritto esplosivo. Dopo essersi ritirato dall’insegnamento, per dedicarsi alle sue orchidee, morì infine nel 1990.

E i vermi di tutto il mondo sospirarono di sollievo.

planarian2

La sindrome di Cotard

Non c’è volto che non sia sul punto di cancellarsi come il volto d’un sogno.
(Jorge Louis Borges, L’Aleph, 1949)

Immaginate per un momento un contesto spaventoso: venite coinvolti in un terribile incidente automobilistico, battete la testa e tutto si fa nero. Vi risvegliate in ospedale, e dopo qualche giorno riuscite ad alzarvi e recarvi in bagno da soli. Per la prima volta dopo il vostro blackout potete guardarvi nello specchio. E lì, di fronte a voi, sta una faccia che non riconoscete. Certo, assomiglia a voi, ma non siete voi.
Cosa pensereste? E qualora, rivedendo vostra moglie o vostro marito, i vostri figli e parenti, voi non sentiste assolutamente alcuna emozione, come reagireste? Forse arrivereste alla conclusione che tutto quello che state vivendo è un’illusione: in realtà voi siete morti in quell’incidente, e ora vi trovate in un deprimente aldilà, fatto ad immagine del buon vecchio mondo, ma che non vi può convincere appieno. Dopo un po’ cominciate a sentire il vostro corpo putrefarsi, vi sembra di non avere più gli organi interni, e allora a cosa serve mangiare? A cosa serve fare una qualsiasi delle cose che facevate prima, se sapete intimamente di essere dei morti che camminano?

Non è un romanzo di Philip K. Dick. Lo scenario da incubo appena descritto è quello che potrebbe vivere chi soffre della sindrome di Cotard, e non è nemmeno necessario un trauma cranico perché si manifesti. Nonostante abbia preso il nome dal neurologo francese Jules Cotard, egli non è stato il primo a descrivere la sindrome. Già nel 1788 Charles Bonnet riportò il caso di una donna anziana che rimase paralizzata quando una violenta corrente d’aria le colpì il collo mentre cucinava, ed ella collassò come se avesse avuto un infarto. Una volta ripresasi, la donna chiese alle figlie di essere vestita con il corredo funebre e di essere chiusa in una bara perché, di fatto, era “morta”.


Cotard nel 1880 venne invece a contatto con una donna di mezza età che si lamentava di non avere “né cervello, né nervi, né un petto, né uno stomaco, né gli intestini”. Ai suoi occhi, il suo corpo era in avanzato stadio di decomposizione; per lei non esistevano più né Dio né Satana, e siccome lei stessa non aveva più un’anima, non aveva nemmeno bisogno di mangiare. Questa donna morì di inedia e di fame.

La sindrome di Cotard è un rara affezione mentale che insorge in alcuni casi all’interno di quadri schizofrenici o psicotici, o anche associata all’uso di farmaci antivirali come l’aciclovir (il farmaco di scelta per la cura di herpes e varicella). I neurologi hanno scoperto un’interessante correlazione con la sindrome di Capgras, nella quale il soggetto si convince che i suoi parenti o amici siano in realtà degli impostori “travestiti” come i loro vecchi compagni. La sindrome di Capgras è rivolta verso l’esterno, verso altre persone, mentre la sindrome di Cotard riguarda il modo in cui un individuo vede se stesso; ma l’incapacità di riconoscimento è la stessa.

Studiando i casi di Capgras, alcuni neurologi sono arrivati alla conclusione che questa impossibilità di riconoscere gli astanti sia essenzialmente visiva: un soggetto affetto dalla sindrome riconosce facilmente sua moglie, ad esempio, solo se le parla al telefono – ma appena la vede di persona, si convince immediatamente che quella non è veramente lei. Così la teoria più accreditata è che sia avvenuta una disconnessione fra l’area della corteccia temporale che si occupa del riconoscimento visivo delle facce e le aree che associano le emozioni a quegli stimoli visivi (l’amigdala e altre strutture limbiche). Questo fa sì che, guardando la moglie, il soggetto non provi nessuna di quelle emozioni che ricorda di aver provato in passato, e di conseguenza il cervello raggiunge la conclusione che “poiché guardandola non provo nulla per lei, quella non può essere mia moglie, la donna che amo”.

Nei casi di Cotard, questo tipo di dinamica si ritorce contro l’immagine di sé (che sia in uno specchio, o nella propriocezione mentale interna); il soggetto non si riconosce più, e arriva a pensare di vivere un’illusione, di essere un cadavere ambulante o ancora peggio: alcuni pazienti credono  di aggirarsi in un mondo in cui tutto è morto, alberi compresi; altri sono convinti di essere all’inferno.


La cura farmacologica per la sindrome di Cotard include normalmente antidepressivi e antipsicotici; anche se, vista la scarsa conoscenza che abbiamo di questi rari fenomeni, si tratta sempre di cure sintomatiche.

Le psicosi di derealizzazione e le sindromi come quella di Cotard sono inquietanti non soltanto perché mostrano quanto poco sappiamo della nostra mente: ci ricordano soprattutto che la realtà è quello che crediamo che sia, perfino contro ogni logica o indizio razionale.