A Computer In A Skirt

(This article originally appeared on #ILLUSTRATI n. 46: #HEROES)

Credits: NASA/Sean Smith

Next year this beautiful lady, Katherine Johnson, will turn one hundred. When she was a little girl, her father Joshua used to repeat to her: “You are as good as anybody in this town, but you’re no better”.
It was hard to believe you were as good as anybody else for a coloured little girl who had grown up in White Sulphur Springs, where education ended compulsorily with the eighth grade for anybody who was not white.
Katherine’s father, Joshua, worked as a farmer and handyman for the Greenbrier Hotel, the thermal resort where the wealthiest squires of all Virginia used to spend their holidays; it was perhaps for this reason that he wanted his daughter to follow her own path without hesitation, in spite of the segregationist barriers. If she wasn’t allowed to study in the small town where they lived, he was going to bring her to Institute, 130 miles further west.

Katherine, for her part, sped up the process: at the age of 14 she had already finished high school, at the age of 18 she earned a degree with honours in mathematics. In 1938 the Supreme Court established that “white-only” universities should admit coloured students, therefore in 1939 Katherine became the first African-American woman to attend the graduate school at the West Virginia University in Morgantown.
After completing her studies, however, a career was far from being guaranteed. Katherine wished she could take up research, but once again she had to cope with two disadvantages: she was a woman, and on top of that African-American.

She taught mathematics for more than ten years, waiting for a good chance which eventually presented itself in 1952. NASA (called NACA at the time) had started to employ both white and African-American mathematics, and offered her a job. Therefore in 1953 Katherine Johnson joined the very first team of the space agency.
She started working in the “computer in skirts” section, a pool of women whose job was to read the data from the black boxes of planes and carry out other mathematical tasks. One day Katherine was assigned to an all-male flight research team; she was supposed to work with them for a limited time, but Katherine’s knowledge of analytic geometry made her bosses “forget” to return her to her old position.

But she couldn’t escape segregation. Katherine was required to work, eat, and use restrooms in areas separated from those of her white peers. Regardless of whoever had carried out the work, reports were signed only by the men of the pool.
But Katherine had kept in mind her father’s words, and her strategy was to ignore what she was expected to do. She used to participate in the all-male engineering meetings, she signed reports in place of her male superiors, and in spite of any objection. Because she had never thought she was inferior – nor superior – to anybody.

That was a pioneering era and participating in the first Space Task Force in history meant venturing in completely new operations and facing unknown issues. With her competence and talent for geometry, Katherine was one of the most brilliant “human computers”. She calculated the trajectory of the first American space flight, the one of Alan Shepard in 1961.

Then at some point NASA decided to move on to electronic computers, dismantling the team of “human calculators”; the first flight programmed using the machines was that of John Glenn, who orbited around the Earth. But the astronaut himself refused to leave unless Katherine manually verified all the calculations made by the computers. She was the only one he trusted.
Later Katherine helped to calculate the trajectory of Apollo 11, launched in 1969. Seeing Neil Armstrong taking the first step on the Moon moved her, but only to a certain point: for somebody who had been working on that mission for years, this certainly came as no surprise.

For a long time, little was known about the work carried out by Katherine (and her colleagues): overlooked for decades by a society that was always reluctant to acknowledge her real value, today her name is studied at school and her story has been recently narrated by the film Hidden figures (2016, directed by Theodore Melfi). The contribution offered by Katherine to the space race is now regarded as essential – although the ones who became heroes were those astronauts who could have never left the Earth soil without her precise calculations.

Smiling, about to turn one hundred, Katherine Johnson continues to repeat: “I’m as good as anybody, but no better”.

 

The Unexpected Ascent

(This article originally appeared on #ILLUSTRATI n. 44, Che ci faccio qui)

It’s September 7, 2013. At the 0B pavilion of the Wallops Flight Facility, on the east coast of Virginia, NASA is getting ready to launch a rocket towards the Moon.
The LADEE probe was designed to study the atmosphere and the exosphere of our satellite, and to gather information about moon dust. For this purpose, the probe is equipped with two technologically advanced mass spectrometers, and a sensor which is capable of detecting the collisions of the minuscule dust particles that rise up from the lunar ground due to the electrostatic effect.

As the countdown begins, dozens of specialists supervise the data flow coming from the various sectors of the rocket, checking the advancing launch phases on their monitors. Vibrations, balancing, condition of the ogive: everything seems to be going according to plan, but mental tension and concentration are palpable. It is a 280 million dollar mission, after all.

Yet at the 0B pavilion of the Wallops Flight Facility, on the east coast of Virginia, there is also someone who is happily ignoring the frantic atmosphere.
She knows nothing about electrostatics, mass spectrometers, solid rocket fuels or space agencies. Furthermore, she does not even know what a dollar is.
The peaceful creature just knows that she is very satisfied, having just gulped down as many as three flies within two minutes (although she ignores what a minute is).
From the edge of her body of water she looks at the moon, yes, like every night, but without trying to reach it. And like every night, she croaks, pleased with her simple life.

A life that had always been without mysteries, ever since she was just a tadpole. A comfortably predictable life.
But now, all of a sudden – here come the thunderous roar, the flames, the smoke. Absurdity breaks into the reality of our poor frog. From the pool, she rises in the air, sucked up by the rocket’s contrail. Flung up in the sky, in an unexpected flight, in a definitive and shining rapture.

NASA Wallops Flight Facility © Chris Perry

She sees her entire existence passing before her eyes, like in a movie – although she doesn’t know what a movie is. The endless stakeouts waiting for a tiny little insect, the cool nights spent soaking in the water, the eggs she has never managed to lay, the brief moments of fulfilment… but now, because of this cruel and unnatural joke, it all seems to be meaningless!
“There is no criterion for such an end” reflects the amphibious philosopher in the fraction of a second in which the incredible trajectory pushes her towards the rocket’s furnace “but maybe it is better this way. Who would really want to be weighed down by a reason? Every moment I have lived, good or bad, has contributed to bring me here, in a vertiginous ascent towards the flash of light in which I am about to dissolve. If this world is a meaningless dance, it is a dance after all. So let’s dance!”
And with this last thought, the fatal blaze.

One must imagine that frog happy.

Stoned spiders

1948, University of Tubingen, Germany.
Zoologist H. M. Peters was frustrated. He was conducting a photographic research on the way orb-weaver spiders build their web, but he had encountered a problem: the arachnids he was studying insisted on performing this task of astounding engineering only during the night hours, very early in the morning. This schedule, besides forcing him to get up at an ungodly hour, made photographic documentation quite hard, as the spiders preferred to move in total darkness.
One day Peters decided to call on a collegue, young pharmacologist Dr. Peter N. Witt, for assistance. Would it be possible to somehow drug the spiders, so they would change this routine and start weaving their webs when the sun was already up?

Witt had never had any experience with spiders, but he soon realized that administering tranquilizers or stimulants to the arachnids was easier than he thought: the little critters, constantly thirsty for water, quickly learned to drink from his syringe.
The results of this experiment, alas, turned out to be pretty worthless to zoologist Peters. The spiders kept on building their webs during the night, but that was not the worst part of it. After swallowing the medicine, they weren’t even able to weave a decent web: as if they were drunk, the arachnids produced a twisted mesh, unworthy of being photographed.
After this experience, a disheartened Peters abandoned his project.
In Dr. Witt’s mind, instead, something had clicked.

Common spiders (Araneidae) are all but “common” when it comes to weaving. They build a new web every morning, and if byt he end of the day no insect is trapped, they simply eat it. This way, they are able to recycle silk proteins for weeks: during the first 16 days without food, the webs look perfect. Whe nthe spider gets really hungry, it begins sparing the energy by building a wider-meshes web, suitable to catch only larger insects (the spider is in need of a substantial meal).
After all, for a spider the web isn’t just a way to gather food, but an essential instrument to relate with the surrounding world. Most of these arachnids are almost totally blind, and they use the vibrations of the strands like a radar: from the perceived movements they can understand what kind of insect just snagged itself on the web, and if it is safe for them to approach it; they can notice if even a single thread has broken, and they confidently head in the right direction to repair it; they furthermore use the web as a means of communication in mating rituals, where the male spider remains on the outer edges and rythmically pinches the strings to inform the female of its presence, in order to seduce her without being mistaken for a juicy snack.

peter-witt

During his experimentation with chemicals, Dr. Witt noticed that there seemed to be a significative correspondence between the administered substance and the aberrations that the spiderweb showed. He therefore began feeding the spiders different psychoactive drugs, and registering the variations in their weaving patterns.
Dr. Witt’s study, published in 1951 and revised in 1971, was limited to statistical observation, without attempting to provide further interpretations. Yet the results could lead to a fascinating if not very orthodox reading: it looked like the spiders were affected in much the same way humans react to drugs.

webs

Under the influence of weed, they started regularly building their web, but were soon losing interest once they got to the outer rings; while on peyote or magic mushrooms, the arachnids movements became slower and heavier; after being microdosed with LSD, the web’s design became geometrically perfect (not unlike the kaleidoscopic visions reported by human users), while more massive doses completely inhibited the spiders’ abilities; lastly, caffeine produced out of control, schizoid results.

Spiderweb after high doses of LSD-25.

Clearly this “humanized” interpretation is not scientific to say the least. In fact, what really interested Witt was the possibility of using spiders to ascertain the presence of drugs in human blood or urine, as they had proved sensitive to minimal concentrations, which could not be instrumentally detected at the time. His research continued for decades, and Witt went from being a pharmacologist to being an entomology authority. He was able to recognize his little spliders one by one just by looking at their webs, and his fascination for these invertebrates never faded.
He kept on testing their skills in several other experiments, by altering their nervous system through laser stimulation, administering huge quantities of barbiturics, and even sending them in orbit. Even in the absence of gravity, in what Witt called “a masterpiece in adaptation”, after just three days in space the spiders were able to build a nearly perfect web.

Near the end of the Seventies, Witt discontinued his research. In 1984 J. A. Nathanson re-examined Witt’s data, but only in relation to the effects of caffeine.
In 1995 Witt saw his study come back to life when NASA successfully repeated it, with the help of statistic analysis software: the research showed that spiders could be used to test the toxicity of various chemicals instead of mice, a procedure that could save time and money.

Anyway, there is not much to worry regarding the fate of these invertebrates.
Spiders are among the very few animals who survived the biggest mass extinction that ever took place, and they are able to resist to atmospheric conditions which would be intolerable to the majority of insects. Real rulers of the world since millions of years, they will still be here a long time — even after our species has run its course.

Viaggi spaziali

L’esplorazione spaziale, iniziata in modo pionieristico alla fine degli anni ’60, ha conosciuto un momento “morto” negli ultimi decenni, ma oggi sta tornando ad essere parte integrante dei progetti delle grandi agenzie aerospaziali. Gli Stati Uniti hanno pianificato i primi viaggi su Marte per la metà degli anni 2030; ESA, Russia e Cina sembra abbiano in progetto missioni similari. Ma al di là dello stimolo che questi salti nell’ignoto regalano alla nostra fantasia, ci sono dei lati oscuri con cui fare i conti (che sono poi quelli che ci interessano, qui a Bizzarro Bazar!).

Innanzitutto, teniamo presente che le enormi distanze da superare pongono diversi grattacapi. Prendiamo ad esempio una missione su Marte. Il vero problema, sostengono i professori della NASA, sarebbe il costo del “biglietto” di ritorno. Far decollare una nave spaziale dalla Terra richiede già una quantità di carburante inimmaginabile, e dotare il mezzo di una quantità di combustibile tale da permettere il viaggio di rientro è al momento pura utopia. Questo significa che il volo verso Marte sarebbe di sola andata. I primi pionieri dovrebbero divenire dei veri e propri coloni, disposti non soltanto ad esplorare il nuovo pianeta, ma a fondarvi una comunità. Dovrebbero essere scelte coppie in grado di riprodursi, per dar vita alla prima vera colonia marziana che comprenda bambini nati e cresciuti sul Pianeta Rosso. Quanti di voi non esiterebbero un attimo a lasciarsi tutto alle spalle per iniziare una nuova vita su Marte? Quale uomo accetterebbe di partire sereno, sapendo che non farà mai più ritorno, che non vedrà mai più il mare, i suoi famigliari, gli uccelli nel cielo?

Parecchi, a quanto sembra. Da quando il Journal of Cosmology ha indetto il “sondaggio”, almeno 500 volontari si sono presentati all’appello. Persone per cui l’avventura, la curiosità e la gloria valgono più di ogni altra cosa; persone che non hanno più nessun legame; persone che sognano un’epopea spaziale da quando hanno 10 anni. Forse sarà proprio questo il bacino al quale gli scienziati attingeranno, in un prossimo futuro, per selezionare gli equipaggi di questa epocale “invasione”.

Ma i viaggi spaziali sono anche lunghi, e il lato più cupo della nostra personalità può prendere il sopravvento. Lo spazio può diventare una gabbia fatta di paranoie, illusioni e depressione, fatto da cui gli scrittori di fantascienza ci mettono in guardia da molti anni. Innanzitutto, la solitudine. Una solitudine inimmaginabile. Finora i viaggi sono stati troppo brevi per una qualche manifestazione psicologica in questo senso. Ma la NASA continua a ponderare gli effetti dannosi dell’isolamento per lunghi periodi di tempo, tanto da investire 1,74 milioni di dollari nella Virtual Space Station, una sorta di “psicologo-robot” che dovrebbe aiutare e dare consigli agli astronauti depressi dalla profonda solitudine. Nel 2008, uno studio condotto al NHC HealthCare in Maryland Heights ha indicato che un cane robotico si è rivelato un ottimo rimedio per la solitudine dele persone anziane, quasi quanto un cucciolo reale… anche se l’immagine di un astronauta solo nello spazio, che parla e coccola un cane-robot non è delle più confortanti.

Nello spazio, un posto che a torto riteniamo “vuoto”, si spargono radiazioni di vario tipo. Senza la protezione dell’atmosfera, queste radiazioni possono essere pericolose. E non si tratta qui soltanto delle temibili esplosioni di raggi gamma (evento talmente raro da essere trascurabile), ma anche semplicemente delle più comuni radiazioni cosmiche: alcuni esperimenti hanno dimostrato che l’esposizione a questi raggi può causare alterazioni nell’ippocampo, l’area del cervello responsabile della creazione di nuove cellule cerebrali e ritenuta responsabile dell’apprendimento e degli stati di umore. Proteggere con scudi appropriati gli astronauti potrebbe significare ridurre i danni cerebrali e la depressione di un viaggio al di fuori dell’orbita terrestre.

Un altro problema dei viaggi astrali è la fornitura e la purificazione dell’aria. Molti studi condotti sugli scalatori di alta quota hanno dimostrato come uno scarso approvvigionamento di ossigeno porti a un calo di attenzione, di capacità cognitiva e di riconoscimento linguistico. In situazioni ancora più estreme, a ridotto apporto di ossigeno, si verificano danni permanenti al cervello. Per questo si stanno dotando le astronavi di potenti rilevatori, in grado di accorgersi in largo anticipo di un cambio nell’aria della capsula. Vengono sviluppati anche dei software in grado di “misurare” la coerenza delle risposte degli astronauti a determinate domande, per prevenire eventuali danni psichici.

Aggiungete a questo quadro lo stress del lavoro di un astronauta, costantemente vigile e attento, che deve tenere sott’occhio i parametri della missione, controllare l’equipaggiamento, sapendo che soltanto un po’ di lamiera lo protegge dall’agghiacciante vuoto siderale. Molte persone, in situazioni molto meno stressanti, si imbottiscono di psicofarmaci. L’uso e l’abuso di tali sostanze (già oggi utilizzate a bordo delle stazioni spaziali) sarà un ennesimo grattacapo da risolvere. E pensate anche solo per un momento a questa situazione: non siete voi a impazzire nello spazio, ma il vostro collega. Se nella vostra giornata quotidiana c’è sempre un orario di fine lavoro, che vi permette di staccare la spina, beh, su una navicella spaziale non esiste. Per quanto professionali gli astronauti si possano dimostrare, dovranno anche essere addestrati a far fronte a qualsiasi imprevisto, persino il crollo psicologico di uno dei membri dell’equipaggio.

Ed arriviamo infine alla questione più spinosa e difficile. Cosa fare quando un astronauta muore nello spazio?

La mitica Mary Roach, giornalista scientifica autrice dell’imperdibile Stecchiti (2005), ha da poco scritto un libro sui viaggi spaziali. Con la sua consueta scrupolosa curiosità, ha indagato anche il problema della morte nello spazio. E ci ha illuminato sulle ultime tendenze della NASA al riguardo.

La morte, già di per sé destabilizzante, diviene ancora più insostenibile in un ambiente estremo come il cosmo. Nessuno sa come un piccolo gruppo isolato nello spazio possa reagire di fronte alla scomparsa di un membro: sentimenti di paura, perdita di controllo, rabbia, colpa o attribuzione di colpa possono instaurarsi. Di fronte a un decesso che colpisce inaspettatamente un membro dell’equipaggio durante una missione, il tempo per preparare il corpo sarà soltanto di 24 ore, per prevenire infezioni. Ad ogni astronauta verrà chiesto di riempire un diario in cui annotare e sfogare le proprie emozioni al riguardo.  Il corpo, dopo una cerimonia funebre che ricordi quelle terrestri (che serva da guida per la difficile situazione e riaffermi i valori che ci accomunano), verrà deposto in un modulo apposito, studiato per eseguire la cosiddetta Promession: si tratta di un “compostaggio” ecologico dei resti umani, per mezzo del quale il corpo viene completamente congelato, poi scosso violentemente fino a ridurre la salma in una fine polverina. La capsula contenente il cadavere polverizzato verrà poi estromessa dall’astronave, là dove nessuno può vederla, trattenuta da un braccio meccanico, e lì resterà fino a quando l’astronave non rientrerà sulla Terra (ritraendosi poco prima dell’impatto con l’atmosfera); una volta atterrata potrà finalmente avere degna sepoltura. Una particolare attenzione verrà mantenuta sui “sopravvissuti”, per evitare crolli psicologici e follia.

Ecco l’articolo di Mary Roach in cui viene spiegata l’intera procedura (in inglese).

Il sogno di “fare l’astronauta” non ha mai perso il suo fascino. Ma oggi, quando questa fantasia sta quasi per diventare realtà, gli scienziati continuano a interrogarsi su quali siano le vere barriere con cui dovremo fare i conti. E pare che i mostri più pericolosi, gli alieni più letali, prenderanno corpo nella nostra stessa mente.